SIDE-CHAIN CONFIGURATION OF THE SULFUR-ANALOG OF PENICILLIN PRODUCED BY CEPHALOSPORIUM ACREMONIUM

C. LÜBBE[†], S. WOLFE^{a)}, J. E. SHIELDS^{b)}, S. W. QUEENER^{b)}, N. NEUSS^{b)} and A. L. DEMAIN

Fermentation Microbiology Laboratory, Department of Applied Biological Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A. ^{a)}Department of Chemistry, Queens University, Kingston, Ontario, Canada K7L 3N6 ^{b)}Lilly Research Laboratories and Biochemical Development Division, Eli Lilly & Co., Indianapolis, IN 46285, U.S.A.

(Received for publication July 8, 1985)

WOLFE et al.1) recently demonstrated the production of δ -(carboxymethylcysteinyl)penicillin by exposure of δ -(L-carboxymethylcysteinyl)-L-cysteinyl-D-valine (LLD-CMC-CV) to a semi-purified preparation of isopenicillin N synthetase ("cyclase")^{2,3)} from Cephalosporium acremonium strain C-10 (Acremonium chrysogenum ATCC 48272). LLD-CMC-CV is an analog of the normal tripeptide substrate, δ - $(L-\alpha-aminoadipyl)-L-cysteinyl-D-valine$ (LLD-ACV), which is converted to isopenicillin N by C. acremonium cyclase. In LLD-CMC-CV, a sulfur atom exists in the position occupied by methylene in LLD-ACV. Since the L-stereochemistry of the δ -(L- α -aminoadipyl) moiety is unchanged in the conversion of LLD-ACV to isopenicillin N by C. acremonium isopenicillin N synthetase (demonstrated unequivocally by several independent methods, e.g. biological spectrum²⁾, specificity of L-amino acid oxidase³⁾, and derivatization and HPLC⁴⁾), it was suggested that the corresponding δ -(L- α -carboxymethylcysteinyl) moiety was unchanged in the conversion of LLD-CMC-CV to the δ -(carboxymethylcysteinyl)penicillin. The preparation of isopenicillin N synthetase used to produce the δ -(carboxymethylcysteinyl)penicillin was free of isopenicillin N epimerase²⁾. [This epimerase isomerizes the δ -(L- α -aminoadipyl) moiety in isopenicillin N to the corresponding D side chain present in penicillin N]. SHIELDS et al.5) prebis[L-cysteine-(S-acetyl)-L-hemicysteinyl pared $(S^2 {\rightarrow} S^{\scriptscriptstyle 2'})\text{-}\textsc{d} sc{d} sc{d}$ this disulfide dimer to LLD-CMC-CV, independently demonstrated cell-free conversion of LLD-CMC-CV to a penicillin by a partially purified preparation of C. acremonium isopenicillin N synthetase that was not characterized as to the presence or absence of isopenicillin N epimerase. The penicillin was isolated and identified on the basis of its NMR spectrum as a δ -(carboxymethylcysteinyl)penicillin*. The stereochemistry of the δ -(carboxymethylcysteinyl) side chain was assumed without supporting evidence to be the same as that in the δ -carboxymethylcysteinyl)penicillin isolated from a previous in vivo study⁶⁾. In that earlier in vivo study, δ -(D-carboxymethylcysteinyl)penicillin** had been produced by feeding L-CMC to intact cells of a C. acremonium lysine auxotroph.

In order to clarify the nature of the reaction catalyzed by isopenicillin N synthetase, we have experimentally determined the stereochemistry of the ∂ -(carboxymethylcysteinyl)penicillin formed *in vitro* by the action of isopenicillin N synthetase on LLD-CMC-CV. Here we demonstrate that isopenicillin N synthetase from *C. acremonium* C-10, when free of isopenicillin N epimerase^{2,7)}, catalyzes the conversion of LLD-CMC-CV to ∂ -(L-carboxymethylcysteinyl)penicillin.

Presumptive identification of the penicillin product was initially carried out by disk diffusion bioassays against four microorganisms: *Escherichia coli* ESS (a mutant super-sensitive to β lactam antibiotics), *Micrococcus luteus* ATCC 381, *Streptococcus pyogenes* ATCC 10389 and *Salmonella typhimurium* ATCC 13311. In the case of the product produced from the analog tripeptide, the ratios of zone sizes were compared to those obtained with the synthetic sulfur analog of isopenicillin N and the synthetic sulfur analog of penicillin N. As a further control set,

[†] Present address: Fermentation Process Development, Pharmaceutical Research Division, Schering-Plough, Union, New Jersey 07083, U.S.A.

^{*} In nomenclature used by SHIELDS *et al.*⁵⁾, this compound is (6-[2-((amino-2-carboxyethyl)thio)-acetamido]penicillanic acid.

^{**} In nomenclature used by SHIELDS *et al.*⁵⁾, this compound is 6-[2-((D-2-amino-2-carboxyethyl)thio)-acetamido]penicillanic acid.

Table 1. Antibacterial	activities of enzymatic products from LLD-ACV and	LLD-CMC-CV.
Compound	Zone diameter in mm	Ratios

Commound	Zone diameter in mm				Ratios	
Compound -	Eca	Ml	Sp	St	Ec/Ml	Sp/St
Product from LLD-ACV ^b	14.0	27.4	20.7	<7.0	0.51	>2.9
Synthetic isopenicillin N	10.1	24.7	19.3	<7.0	0.40	>2.7
Synthetic penicillin N	27.4	32.6	28.5	11.7	0.84	2.4
Product from LLD-CMC-CVb	10.0	20.8	19.0	<7.0	0.48	>2.7
Synthetic S analog of isopenicillin N	13.1	27.6	24.0	<7.0	0.47	>3.4
Synthetic S analog of penicillin N	36.0	28.0	25.0	19.7	1.3	1.3

^a Abbreviation: Ec; Escherichia coli ESS, Ml; Micrococcus luteus, Sp; Streptococcus pyogenes, St; Salmonella typhimurium.

^b The products were prepared with a partially purified enzyme preparation of *Cephalosporium acremonium* C-10 as previously described¹⁾.

product was also produced with the normal tripeptide LLD-ACV and its zone size ratios were compared to those of synthetic isopenicillin N and penicillin N. Synthesis of synthetic peptides and penicillins were described earlier⁸⁾. Since the synthetic products were not pure, the actual zone sizes are not as important as the ratios of zone sizes comparing *E. coli* to *M. luteus* and *S. pyogenes* with *S. typhimurium.* Table 1 shows (as expected) that the product from LLD-ACV resembles isopenicillin N, not penicillin N. The product from LLD-CMC-CV resembles the synthetic sulfur analog of isopenicillin N and not the synthetic sulfur analog of penicillin N.

Bowers et al.⁸⁾ found that HPLC could be used to separate the sulfur analogs of penicillin N and isopenicillin N. To further examine the identity of our product, HPLC was used under the following conditions: column, Waters C18 Bondapak; solvent, 95% 50 mM KH₂PO₄ (pH 4.0) and 5% CH₃OH; pressure, 141 kg/cm²; detector, 214 nm; flow rate, 2 ml/minute; volume injected, 30 µl. The retention time of the synthetic sulfur analog of isopenicillin N was found to be 4.2 minutes and that of the sulfur analog of penicillin N was 3.7 minutes. A mixture of the two synthetic analogs showed retention times of 4.2 and 3.7 minutes. We next examined reaction mixtures which had been incubated with LLD-CMC-CV. A peak was found in reaction mixtures incubated for 60 minutes; it was absent in the unincubated control and its retention time was similar to that of isopenicillin N (4.1 minutes), thus showing that the penicillin had the L-CMC side-chain.

The finding that the product of the reaction is the CMC analog of isopenicillin N is consistent with the absence of isopenicillin N epimerase activity in the partially purified enzyme preparation used¹⁾. Due to the lability of isopenicillin N epimerase in *C. acremonium* extracts^{2,7)}, even crude extracts of *C. acremonium* CW-19 (after freezing and thawing) would be expected to stop at the isopenicillin N analog stage. The Dconfiguration of the penicillin isolated by mutasynthesis⁶⁾ is consistent with the presence of isopenicillin N epimerase inside intact mycelia of *C. acremonium*. In contrast to the situation with *C. acremonium*, the stability of epimerase in crude extracts of *Streptomyces clavuligerus* allows LLD-CMC-CV to be converted all the way to the CMC analog of deacetoxycephalosporin C⁸⁾.

Acknowledgments

The studies at MIT were supported by grant PCM-82-18029 from the National Science Foundation. CLAUS LÜBBE received a fellowship from the Deutsche Forschungsgemeinschaft (Federal Republic of Germany). The work at Queens University was supported by the Natural Sciences and Engineering Research Council of Canada. We thank HELDA HER-NANDEZ for technical assistance.

References

- WOLFE, S.; I. J. HOLLANDER & A. L. DEMAIN: Enzymatic synthesis of a sulfur-analog of penicillin using the "cyclase" of *Cephalosporium* acremonium. Bio/Technology 2: 635~636, 1984
- KONOMI, T.; S. HERCHEN, J. E. BALDWIN, M. YOSHIDA, N. A. HUNT & A. L. DEMAIN: Cellfree conversion of δ-(L-α-aminoadipyl)-Lcysteinyl-D-valine into an antibiotic with the properties of isopenicillin N in *Cephalosporium* acremonium. Biochem. J. 184: 427~430, 1979
- O'SULLIVAN, J.; R. C. BLEANEY, J. A. HUDDLE-STON & E. P. ABRAHAM: Incorporation of ³H

from δ -(L- α -amino[4,5-³H]-adipyl)-L-cysteinyl-D-[4,4-³H]valine into isopenicillin N. Biochem. J. 184: 421~426, 1979

- 4) NEUSS, N.; D. M. BERRY, J. KUPKA, A. L. DEMAIN, S. W. QUEENER, D. C. DUCKWORTH & L. L. HUCKSTEP: High performance liquid chromatography (HPLC) of natural products. V. The use of HPLC in the cell-free biosynthetic conversion of α-aminoadipyl-cysteinyl-valine (LLD) into isopenicillin N. J. Antibiotics 35: 580~584, 1982
- 5) SHIELDS, J. E.; C. S. CAMPBELL, S. W. QUEENER, D. C. DUCKWORTH & N. NEUSS: Synthesis of a S-(carboxymethyl)cysteine analog of (L-2amino-6-adipyl)-L-cysteinyl-D-valine and its cellfree biosynthetic conversion into 6-[2-((D-2amino-2-carboxyethyl) thio) acetamido] penicillanic acid. Helv. Chim. Acta 67: 870~875,

1984

- TROONEN, H.; P. ROELANTS & B. BOON: RIT 2214, a new biosynthetic penicillin produced by a mutant of *Cephalosporium acremonium*. J. Antibiotics 29: 1258 ~ 1267, 1976
- KUPKA, J.; Y.-Q. SHEN, S. WOLFE & A. L. DEMAIN: Partial purification and comparison of ring cyclization and ring-expansion enzymes of β-lactam biosynthesis in *Cephalosporium acremonium*. Can. J. Microbiol. 29: 488~496, 1983
- BOWERS, R. J.; S. E. JENSEN, L. LYUBECHANSKY, D. W. S. WESTLAKE & S. WOLFE: Enzymatic synthesis of the penicillin and cephalosporin nuclei from an acyclic peptide containing carboxymethylcysteine. Biochem. Biophys. Res. Commun. 120: 607~613, 1984